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► Unpublished and published data were compiled for Arctic fish, birds, and mammals.
► These data were compared to available toxicological threshold limits.
► Toothed whales, polar bears, and some bird and fish species exceeded the limits.
► Increasing mercury concentrations are observed for some Arctic species.
► These exceeded thresholds and increasing Hg trends are of concern.
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This review critically evaluates the available mercury (Hg) data in Arctic marine biota and the Inuit population
against toxicity threshold values. In particular marine top predators exhibit concentrations of mercury in their
tissues and organs that are believed to exceed thresholds for biological effects. Species whose concentrations
exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot
whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char
(Salvelinus alpinus). Toothed whales appear to be one of the most vulnerable groups, with high concentrations
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of mercury recorded in brain tissue with associated signs of neurochemical effects. Evidence of increasing concen-
trations inmercury in some biota in Arctic Canada andGreenland is therefore a concernwith respect to ecosystem
health.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Previous Arctic Monitoring and Assessment Programme (AMAP)
assessments have reported that thehighest biologicalmercury (Hg) con-
centrations in themarine environmentwere foundwithin the upper tro-
phic levels (Dietz et al., 1998a, 1998b; AMAP, 2005). Because of this Hg
effects assessments relating to these species (i.e., with the highest pre-
sumed exposure) were carried out in the present AMAP assessment
using data for species inhabiting this ecological niche in the Arctic and
at lower latitudes. A recent review reported that Hg concentrations
have increased in Arctic animals over the past 150 years, resulting in
more than 92% of the Hg body burden in higher trophic level species
being of man-made origin (Dietz et al., 2009). This indicates that Arctic
species are exposed to higher Hg concentrations today than in historic
times.

Two approaches have generally been taken in identifying and
estimating the risk of possible effects of Hg or other contaminants
in Arctic species. The first involves a comparison of concentrations
in Arctic species against known detrimental levels or toxicity thresh-
olds. In most cases, the detrimental levels are derived from laborato-
ry studies, semi-field studies or observations of affected animals in
the wild, with varying levels of study design rigor and certainty
with respect to the actual cause or causes. Extrapolation is routinely
used in toxicology but difficulties in extrapolation relate generally
to differences in sensitivity, where the same types of effects are
seen but at different doses, or to differences in structure and
function. These scenarios are also complicated by dose (exposure)
reconstruction, and range from being high in certainty to very gross
estimates.

Laboratory animals are most often exposed to a single contaminant
at high doses for short periods of time, and it is difficult to extrapolate
the toxic effects seen at high acute doses to possible adverse effects at
lower but chronic exposures. Wild animals are generally exposed to
lower concentrations of Hg or other contaminants than laboratory ani-
mals, and they are exposed to mixtures of contaminants. In addition,
captive animals tend to be housed under optimal conditions while
free-ranging animals are subjected to a variety of stressors that may
lower their resilience to toxicants. Differences in species sensitivities
to the effects of contaminants make it difficult to know which of the
tested species best represents those in the Arctic (e.g., Ross, 2000;
O'Hara and Becker, 2003).

This review critically evaluates the existing Hg data in Arctic biota
based on the AMAPHg assessment byDietz et al. (2011b) and compares
this with toxicity threshold values. Details on Hg concentrations, spe-
cies and references are provided in the Supplementary material and
locations in Fig. 1.
2. What role does mercury speciation play in uptake and toxic
effects?

2.1. Mercury uptake and demethylation

More than 95% of the methylmercury (MeHg) in food items is
taken up by mammals, whereas the corresponding proportion for in-
organic Hg is thought to be lower than 15% (Berlin, 1986;WHO, 1993;
Mori et al., 2012). Methylmercury is transported through the intesti-
nal mucosa, and lymph and blood vascular portal systems transport it
into the organs where it may be demethylated, stored, or excreted. In
marine mammals, the liver is the organ with the highest reported Hg
concentrations (Dietz et al., 1998a). Studies show that demethylation
occurs here in marine mammals and birds (Dietz et al., 1990, 2000a).
For terrestrial mammals, including polar bears, kidney has the highest
Hg concentrations and hence may be the main target organ (AMAP,
2011). Some high trophic level predators, such as polar bears and pin-
nipeds (fin-footed mammals such as seals), may use other strategies,
such as excretion of MeHg into growing hair and excretion through
urine and feces (e.g., Dietz et al., 2006a; Brookens et al., 2007, 2008;
Cardona-Marek et al., 2009). Birds utilize a similar excretion strategy
via feathers (e.g., Dietz et al., 2006b). Hair and feathers may represent
a means to limit the bioavailability of MeHg to the central nervous
system (Basu et al., 2009).



Fig. 1. Circumpolar map showing regions from which Hg data was available for the present effect assessment of Arctic wildlife (not all fish locations are shown). See Supplementary
material for details of Hg concentration levels, species and references. Map source: Letcher et al. (2010).
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2.2. Mercury–selenium relationships and interactions

A strong positive correlation between the concentrations of Hg and
Se in tissues (e.g., liver, kidney) of many fish-eating wildlife species, es-
pecially predatory marine mammals is well documented (Koeman et
al., 1973; Koeman and van deVen, 1975; Smith and Armstrong, 1978;
and others). The Hg–Se relationship is a toxicant–nutrient interaction
that has relevance for both basic biology and environmental risk assess-
ment; however, important physiological details of the relationship are
still unclear.

High trophic level mammals and birds may be partially protected
against MeHg toxicity (particularly in the liver and for polar bears
also in the kidney) due to binding of inorganic Hg with Se in an ap-
proximate 1:1 molar ratio, respectively (Dietz et al., 2000a, 2011b).
This complex probably represents a direct covalent (or other strong)
interaction of Hg and Se. In some wild aquatic predatory bird and
mammal species, it has been shown that MeHg predominates in
the liver at low total Hg (THg) concentrations whereas at higher
concentrations an increasingly large percentage of THg is present as
inorganic Hg associated with Se, and some studies have identified
this complex as HgSe (tiemanite) (Koeman and van deVen, 1975;
Dietz et al., 1990, 1998a, 1998b, 2000a 2000b; Scheuhammer et al.,
1998, 2008; Wang et al., 2001; Woshner et al., 2001a, 2001b, 2008;
O'Hara et al., 2003; Arai et al., 2004; Ikemoto et al., 2005; Dehn et al.,
2005, 2006; Eagles-Smith et al., 2009; Moses et al., 2009; Routti et al.,
2011).

3. Is there any evidence that tissue mercury concentrations at
present are harmful to Arctic biota?

3.1. Cerebral exposure and potential neurological effects of mercury on
Arctic marine mammals

Mercury has the potential to cause neurotoxicity in Arctic biota
and human residents and this is of major concern; especially for
women of childbearing age and the developing fetus (e.g. US EPA,



1997; ATSDR, 1999; Clarkson and Magos, 2006; Mergler et al., 2007;
Grandjean et al., 2010). Besides humans, Hg is also neurotoxic to
wildlife and Hg-associated poisoning events have been documented
in some fish-eating species, such as mink (Mustela vison) and com-
mon loons (Scheuhammer et al., 2007; Basu et al., 2009; Pilsner et
al., 2010).

While all chemical forms of Hg have intrinsic neurotoxic properties,
environmental public health is most concerned with organic Hg and in
particularMeHg exposure. Methylmercury biomagnifies through aquat-
ic and marine ecosystems including food chains in the Arctic (Atwell et
al., 1998). Methylmercury can cross the blood–brain barrier (Aschner
and Aschner, 1990), and the brain is considered the primary target
organ of MeHg toxicity in higher organisms (WHO, 1993). At sufficient
concentrations, MeHg may disrupt a range of neurological processes
within the brain owing to its high affinity for protein thiols (Clarkson
and Magos, 2006). Characteristic outcomes of MeHg poisoning in
both humans and mammalian wildlife include structural degeneration
of the occipital cortex and the cerebellum, which leads to paresthesia
(numbness, tingling), ataxia (incoordination), sensory impairment,
and memory loss (ATSDR, 1999; Clarkson and Magos, 2006; Basu
et al., 2007a; Basu and Head, 2010). There is some concern that
Hg concentrations in Arctic wildlife and humans may be approaching
those that cause impacts on behavior and health. For example, an asso-
ciative study on 43 Inuit children (Qaanaaq, Greenland) reported that
Hg exposure may be related to subtle neurological deficits in a few
cases examined (Weihe et al., 2002). Balancing the risks/benefits of Hg
exposure via dietary pathways is an immense challenge as fish and ma-
rine mammals are the primary means by which Hg is transferred to
humans and high trophic level wildlife but are also an excellent and crit-
ical source of nutrients for Arctic consumers.

In a recent study, THg and MeHg levels were evaluated in the
lower medulla oblongata (brain stem) brain region of 82 polar bears
collected by subsistence hunters in Greenland (Basu et al., 2009). In
that study, concentrations of THg of less than 1 μg/g were found
(mean=0.36±0.12 μg/g dw; range 0.11 to 0.87 μg/g). In this same
brain region, MeHg comprised 83% of the THg present. Krey et al.

(2012) documented that brain MeHg comprised 100% of the brain
total mercury in Canadian polar bears from Nunavik (Fig. 2). In a pre-
vious study of eight ringed seals from northern Quebec, the mean THg
concentration in the cerebral cortex was 0.09±0.05 μg/g ww (wet
weight) (Basu et al., 2006a). Similar THg values (0.13±0.03 μg/g ww)
were found in the brain tissue of six harp seal (Phoca groenlandica)
pups collected from the Grise Fjord and Pangnirtung region of Nunavut
(Ronald et al., 1984). Canadian beluga exhibited brain concentrations
that are an order of magnitude greater than those in polar bears and
seals (Lemes et al., 2011).

At a neurochemical level, MeHgmay cause a range of sub-clinical ef-
fects and so neurochemical biomarkers have recently been used to as-
sess the early risks of Hg to several fish-eating wildlife species that
accumulate high levels of Hg. For example, changes in the levels ofmus-
carinic cholinergic receptors (increased) and N-methyl-D-aspartate
(NMDA) glutamate receptors (decreased) were related to concentra-
tions of brain Hg in wild mink (Basu et al., 2005, 2007b), common
eagles, and bald eagles (Scheuhammer et al., 2008). Several of these
neurochemical effects have been substantiated in laboratory studies
involving captive mink experimentally fed environmentally realistic
MeHg doses (Basu et al., 2006b, 2007b). These results suggest that Hg
at ecologically relevant levels may be exerting subtle, sub-clinical neu-
rological changes in the 3 to 5 μg/g dw range (dryweight concentration
in brain tissue) in several fish-eating wildlife species.

Neurochemical biomarkers have recently been applied in studies
on Arctic biota (Basu et al., 2009). Despite relatively low concentra-
tions of Hg in the lower brain stem of polar bears, significant negative
correlations were found between both MeHg and THg concentrations
and synaptic NMDA (N-methyl-D-aspartic acid) glutamate receptors
similar to observations in other organisms (Fig. 3). In these polar bear
tissues, concentrations of several chlorinated and brominated organic
chemicals were also measured; however, statistical analyses showed
that these were not correlated with any of the neurochemical bio-
markers (Basu et al., 2009). In a captive mink study, ingestion of food
containing MeHg levels as low as 0.1 ppm (corresponding to brain Hg
concentrations ranging from 1 to 2.2 μg/g ww)was linked to decreased

Harp seal - Grise Fjord, Pangnirtung, 1976-78 (pups, m)
Harp seal - Grise Fjord, Pangnirtung, 1976-78 (juveniles, m)

Harp seal - Grise Fjord, Pangnirtung, 1976-78 (adults, m)
Harp seal - St. Lawrence, 1976-78 (pups, m)

Harp seal - St. Lawrence, 1976-78 (juveniles, m)
Harp seal - St. Lawrence, 1976-78 (adults, m)
Harp seal - Newfoundland, 1976-78 (pups, m)

Harp seal - Newfoundland, 1976-78 (juveniles, m)
Harp seal - Newfoundland, 1976-78 (adults, m)

Grey seal - Nova Scotia, 1972
Ringed seal - Northern Quebec

4 seal species - Norwegian Coast, 1989-90

Ittoqqortoormiit, E. Greenland, 1999-2001 (brain stem, f)
Ittoqqortoormiit, E. Greenland, 1999-2001 (brain stem, m)

Canada, 2008 (cerebellum, m&f)
Canada, 2008 (frontal lobe, m&f)

Canada, 2008 (temporal lobe, m&f )

Greenland (cerebral cortex, all)

 ww

Neurochemical threshold (lower)

Neurochemical threshold (upper)

Polar bear

Humans
(Inuit)

Beluga

Seals

Kuujjuaq, E. Canada, 2000-2003 (Cerebellum, all)
Kuujjuaq, E. Canada, 2000-2003 (Frontal lobe, all)
Kuujjuaq, E. Canada, 2000-2003 (Brain stem, all)

Fig. 2. Overview of mean mercury concentrations in brain from Arctic biota and humans. Red lines indicate the mean mercury concentrations in East Greenland polar bear brain
stem that were associated with lower N-methyl-D-aspartate (NMDA) receptor levels and the mercury-associated neurochemical effect threshold in the 3 to 5 μg/g dw range based
on previous studies on fish-eating mammals (Basu et al., 2006b, 2007b) and birds (Scheuhammer et al., 2008). For detailed data see Table S1. In cases where minimum and max-
imum concentrations are available these are indicated by range bars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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NMDA receptor levels (Basu et al., 2007b). A decreased level of brain
glutamate NMDA receptors is potentially of ecological and physiological
concern because glutamate is the main excitatory neurotransmitter,
and glutamate receptors have essential roles inmultiple facets of animal
health, behavior, reproduction, and survival (Siegel et al., 2006). Changes
to these receptors may represent one of the earliest and most sensitive
biochemical indicators of MeHg exposure and effect.

3.2. Mercury-related histopathology of Arctic marine mammals

Few studies have investigated the histopathology (i.e. microscopic
cellular and interstitial lesions) of Hg in Arctic wildlife. It is important
to understand that all Arctic marine mammals are contaminated with
a range of toxic substances including organic chemicals and mercury,
and that the lesions found are similar to those being due to age, path-
ogen exposure and chemical contamination. Therefore; it can be hard
to distinguish between the exact effects from these three groups of
stressors despite observed significant relationships.

3.2.1. Liver exposure and effects
The functions of the liver are to serve as lymphatic and intestine drain-

age, to support metabolic processes and to synthesize plasma proteins
and coagulation factors, as well as being an endocrine/immunological
modulator and storage site of energy (glycogen) (Janeway et al., 2001;
Ganong, 2005; Klaassen et al., 2007). In addition, the liver is the key site
where xenobiotic compounds are biotransformed (Janeway et al., 2001;
Ganong, 2005; Klaassen et al., 2007). Studies of Hg driven liver damage
have been conducted both in the laboratory and in the field (Kelly,
1993; MacLachlan and Cullen, 1995; Rawson et al., 1993; Thompson,
1996; AMAP, 1998, 2005; Klaassen et al., 2007). In the Arctic, investiga-
tions of histopathological lesions in liver tissue from Arctic wildlife have
focused on polar bears, pilot whales, bowhead whales, beluga and ringed
seals (e.g.,Woshner, 2000;Woshner et al., 2002; Sonne et al., 2007, 2010).
Liver lesions were found in these five species, and where statistically sig-
nificant associations were found between histochemical endpoints and
Hg and Cd concentrations.

Liver is a major tissue where exposure to POPs and Hg elicits an ef-
fect via three biochemical pathways: induction of the sER (smooth
endoplasmic reticulum, including CYP450); disruption of the ADP.ATP
pathway; and free radical oxidative stress of the cellmembrane resulting
in hypoxia and hepatomegaly (enlarged liver) as the first signs of liver
toxicosis (Kelly, 1993; MacLachlan and Cullen, 1995; Klaassen et al.,
2007). As such, liver weight may be a preliminary indicator (invasive
biomarker) for POP and Hg exposure, and effects in Arctic marine
mammals. However, non-specific histopathological changes such as in-
tracellular hepatocytic steatosis (foamy cytoplasm), inflammation (lym-
phocytic andmultinuclear cells) and necrosis may also occur, but cannot
be used as specific contaminant biomarkers (Kelly, 1993; MacLachlan
and Cullen, 1995; Klaassen et al., 2007).

In the wild, only a few studies have associated metal exposure to
pathological changes in the liver. For example, high Hg concentrations
of 61 μg/g ww in the liver of Atlantic bottlenose dolphins (Tursiops
truncatus) were associated with liver abnormalities (Rawson et al.,
1993). The histopathological changes found in the liver of Arctic marine
mammals (i.e., Arctic beluga, polar bear, bowhead whale, pilot whale
and ringed seal) are similar to those observed in other Hg-exposedma-
rine and laboratory mammals (Woshner, 2000; Woshner et al., 2002;
Sonne et al., 2007, 2010). The latter, however, showed that histopatho-
logical changes could also be ascribed to age and dietary composition
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Fig. 3. Significant correlation between glutamate N-methyl-D-aspartate (NMDA) receptor
levels and both total mercury (n=60; r=−0.34, pb0.01) and methylmercury (n=6;
r=−0.89; pb0.05) in themedulla oblongata brain region of free-ranging East Greenland
polar bears.
Source: adapted from Basu et al. (2009).
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Fig. 4. Mercury concentrations in polar bear liver for selected regions of the Arctic and selected periods (for full datasets see Table S2). The lethal/harmful effect level for terrestrial
free-ranging wildlife (30 μg/g ww; Thompson, 1996) and the observed effect level for marine mammals associated with liver lesions in bottle-nosed dolphins (61 μg/g ww; Rawson
et al., 1993) are also shown. In cases where minimum and maximum concentrations are available these are indicated by range bars.
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(lipid content), creating uncertainty in ascribing the lesions specifically
to Hg.

Fig. 4 shows the mean liver Hg concentrations in polar bears of sev-
eral age classes from various Arctic locations. Using an estimated toxic
threshold value for terrestrial mammals of 30 μg/g ww (Thompson,
1996) only polar bear means from the eastern Beaufort Sea and South-
west Melville Island (age adjusted to 6.9 years) exceeded this thresh-
old. Bears from Southwest Melville Island likewise exceeded the toxic
threshold value of 61 μg/g ww for marine mammals (Rawson et al.,
1993).

The only population where the mean value exceeded the thresh-
old value for toxic effects in marine mammals (61 μg/g ww; Rawson
et al., 1993) was for hooded seals (Cystophora cristata) from Davis
Strait sampled in 1984 (mean 78 μg/g ww; no later data available
from this region) (Fig. 5). Several other species and populations,
such as ringed seals (>5 years) from Grise Fiord (in 1998) and hood-
ed seals from the Greenland Sea (in 1999) had mean concentrations
that approached the terrestrial mammal toxic threshold value of
30 μg/g ww (Thompson, 1996).

Fig. 6 shows the mean Hg concentrations in liver tissue from ba-
leen and toothed whales. All baleen whale populations had liver Hg
concentrations far below the toxic threshold levels. However, pilot
whales from the Faroe Islands had liver concentrations above the
61 μg/g ww toxic threshold value (Hoydal and Dam, 2009; Sonne et
al., 2010) for marine mammals provided by Rawson et al. (1993).
Beluga from the St Lawrence River and Point Lay had mean liver con-
centrations close to the 30 μg/g ww toxic threshold value for terres-
trial mammals provided by Thompson (1996).

3.2.2. Renal exposure and effects
Renal (kidney) lesions are of a health concern since this organ has

endocrine functions, acts as a blood filter that clears metabolic waste

products such as urea, and maintains calcium and phosphorus ho-
meostasis, blood pressure, water and electrolyte levels as well as acti-
vates vitamin D (Ganong, 2005). Kidney lesions have been reported in
whale species and polar bears from the Arctic (cf. Woshner, 2000;
Woshner et al., 2002; Sonne et al., 2007, 2010; Rosa et al., 2008) re-
semble those reported for gray seals (Halichoerus grypus) and ringed
seals and bottlenose dolphins living in the heavily metal and
organohalogen polluted regions such as the Baltic Sea (Lavery et al.,
2009; Bergman et al., 2001). However, some work has shown that
age and micro-pathogens (e.g., bacteria and parasites) are important
co-factors in the development of kidney lesions in Arctic marine mam-
mals which must be considered when evaluating metal toxicosis
(Woshner, 2000; Woshner et al., 2002; Sonne et al., 2007, 2010; Rosa
et al., 2008).

Fig. 7 shows Hg concentrations in renal tissue from polar bears. It
is clear that for two populations from Southwest Melville Island and
the eastern Beaufort Sea (sampled prior to 1991), kidney mean con-
centrations exceeded the toxic threshold value for marine mammals
(61 μg/g ww). These values were, however, calculated from tissue ra-
tios from Greenland bears as no kidney data were available from
these regions. If, on the other hand, the terrestrial toxic threshold
value of 30 μg/g ww is used then polar bears from East Greenland
also exceeded the threshold level. The increases observed in Hg con-
centration in polar bear hair in recent years indicate that kidney con-
centrations have increased in some of the northern populations
(Dietz et al., 2006a, 2009, 2011a). The prediction of the northeastern
Canadian bears as being at risk of Hg toxicity fits well with the liver
and hair data described above and in AMAP (2011).

Mean Hg concentrations in renal tissue for various seal species
showed that none of the seal populations have renal Hg concentra-
tions that reach the 61 μg/g ww toxic threshold value for marine
mammals or the 30 μg/g ww toxic threshold value for terrestrial
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Fig. 5. Mercury concentrations in seal and walrus liver for selected regions of the Arctic and selected periods (for full datasets see Table S3). The observed effect level for marine
mammals associated with liver lesions in bottle-nosed dolphins (61 μg/g ww; Rawson et al., 1993) is also shown. In cases where minimum and maximum concentrations are
available these are indicated by range bars.
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mammals. All baleen whale populations had lower kidney Hg concen-
trations than the toothed whales. No whale population had kidney
concentrations that reach the 61 μg/g ww toxic threshold for marine
mammals or the 30 μg/g ww toxic threshold value for terrestrial mam-
mals (Figs. 8 and 9).

3.3. Blood mercury in high trophic level Arctic species in comparison with
human health guidelines

Because blood represents one of the few minimally invasive mon-
itoring matrices for live vertebrates, and because multiple organs are
being exposed through blood, this matrix is widely used in toxicology

studies. Mercury concentrations in blood are mainly in the methylat-
ed form (MeHg) and represent post-absorptive processing (diet), and
release (mobilized) of stored sources (e.g., MeHg in muscle, liver)
(Ronald et al., 1977).

Blood Hg concentrations for polar bears were in the same range as
for harp seals from St. Lawrence, northeastern Canada andWest Green-
land, but greater than the levels in the Labrador harp seals (Fig. 10).
Only blood Hg concentrations in Inuit women from Qaanaaq, north-
western Greenland, were similar to levels in polar bear. Blood Hg
concentrations showed the lowest concentrations in western Hudson
Bay and comparable concentrations between Alaska and East Greenland
(Cardona-Marek et al., 2009; Dietz et al., 2000b). Total Hg concentrations
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Fig. 6. Mercury concentrations in whale liver for selected regions of the Arctic and selected periods (for full datasets see Table S4). The observed effect level for marine mammals
associated with liver lesions in bottle-nosed dolphins (61 μg/g ww; Rawson et al., 1993) is also shown. In cases where minimum and maximum concentrations are available these
are indicated by range bars.
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Fig. 7. Mercury concentrations in polar bear kidney for selected regions of the Arctic and selected periods (for full datasets see Table S2). The lethal/harmful effect level for terres-
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in the blood of southern Beaufort Sea polar bears did not differ much by
year (2005, 2007), age, or sex. Cardona-Marek et al. (2009) assessed
sub-adults (3 to 5 years) and dependent young (1 to 2 years), and
found a considerable amount of Hg in both blood and hair. Mercury in
dependent young was suggested to be via maternal sources of Hg
(i.e., during gestation and/or lactation) (Knott et al., 2012). This is an

important exposure route for Hg in young animals, and indicates an im-
portant elimination route for reproductive females (Knott et al., 2012).
Concentrations of THg in adult polar bears ranged from 7 to 210 μg/L
for blood, with adult females having a greater concentration of THg in
hair than adult males, again indicating a cohort of concern exposed to
higher Hg (i.e., the fetus and neonate) as reported by Cardona-Marek
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Fig. 8. Mercury concentrations in seal and walrus kidney for selected regions of the Arctic and selected periods (for full datasets see Table S3). The observed effect level for marine
mammals associated with liver lesions in bottle-nosed dolphins (61 μg/g ww; Rawson et al., 1993) is also shown. In cases where minimum and maximum concentrations are avail-
able these are indicated by range bars.
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Fig. 9. Mercury concentrations in baleen and toothed whale kidney for selected regions of the Arctic and selected periods (for full datasets see Table S4). The observed effect level
for marine mammals associated with liver lesions in bottle-nosed dolphins (61 μg/g ww; Rawson et al., 1993) is also shown. In cases where minimum andmaximum concentrations
are available these are indicated by range bars.

782 R. Dietz et al. / Science of the Total Environment 443 (2013) 775–790



et al. (2009). The explanation for this difference may be due to a higher
dietary exposure of pregnant or lactating female polar bears as theymay
eat more high protein and high Hg-exposed tissues than males, who
tend preferentially to eat blubber which is low in Hg. Also, Alaskan
female bears may target species higher in Hg (smaller pinnipeds),
while males may target larger species with less Hg (bowhead whales
(scavenged), bearded seals and walrus) simply based on larger males
taking larger prey. The implication of maternal transfer of Hg to polar
bear offspring is unknown and further research should examine the
potential of Hg accumulation (and resulting effects) on the developing
organism. A seasonal difference has been reported for polar bear blood
with spring and autumn Hg concentrations being higher than during
summer, when limited sea ice is available on which to hunt, and during
winter when females hibernate and seals are harder to access (Dietz et
al., 2011b).

In the absence of polar bear-specific guidelines for Hg in blood, Hg
blood concentrations are compared to those derived for humans. The
blood guideline established by Health Canada for Hg considers con-
centrations below 20 μg/L in human blood to be within an acceptable
range (Health Canada, 1984). Individuals with Hg concentrations be-
tween 20 and 100 μg/L have been determined to be at ‘increasing
risk’, whereas individuals with blood Hg concentrations that exceed
100 μg/L are considered to be ‘at risk’. Following the observations at
Minamata Bay, Japan where thousands of people suffered from
MeHg poisoning, it was concluded that 200 μg Hg/L whole blood
may be considered a value associated with clinical symptoms of neu-
rotoxicity (Clarkson and Magos, 2006). Based on a review of human
epidemiological data from studies from the Faroe Islands and New
Zealand, the NAS/NRC (U.S. National Academy of Sciences/U.S. National
Research Council) derived a benchmark dose lower limit (BMDL) of
58 μg/L Hg in cord blood. The U.S. National Research Council re-
evaluated the Hg risk assessment (NRC, 2000). The NRC report
suggested that a ten-fold uncertainty factor should be applied in
the development of a tolerable daily intake (NRC, 2000). Based on
this evaluation an informal blood guideline value for Hg of 5.8 μg/L in
blood has been developed (see AMAP, 2003, 2011).When this guideline
value is applied to the polar bear, it is clear that most bears possess
blood Hg levels that would be of health concern in humans. It should

be emphasized that variable sensitivity to Hg exists across species and
that the human 5.8 μg/L guideline is highly conservative. For example,
primates with blood Hg levels exceeding 1000 μg/L did not show any
signs of clinical toxicity (Clarkson and Magos, 2006).

Because many bears are above the human ‘increasing risk’ (20 and
100 μg/L) and the ‘at risk’ (over 100 μg/L) criteria levels, this raises
questions about possible implications for polar bear health. In addition,
Cardona-Marek et al. (2009) reported that the highestHg concentration
in blood (213 μg/L) was from a 16-year old female captured near
Barrow. The maximum concentrations observed in the East Greenland,
southern Baffin Bay and western Hudson Bay populations were 287,
739 and 56 μg/L, respectively (Dietz et al., 2011b; Routti et al., 2011).
The northern Arctic Canada and north western Greenland populations
are likely to have even higher levels of blood Hg, as indicated in the
geographical Hg exposure pattern for polar bear liver and hair (Dietz
et al., 1998a, 2000a).

3.4. Comparison of polar bear hair concentrations with effect guidelines

As polar bear hair has been analyzed extensively over time and across
regions, and as the Hg levels relate to effect thresholds, this matrix was
used to evaluate circumpolar temporal trends in Hg exposure (Dietz et
al., 2011a; Stern et al., 2012). Hair represents a good biomarker of
Hg exposure since it accumulates organic Hg from blood and can be
collected through minimally invasive sampling methods. Hair is a well-
established research matrix for Hg among humans, from which effect
guidelines have been set. As for blood, it is not known to what extent
these effect levels are applicable to wildlife or polar bears in particular.

Dietz et al. (2006a, 2011a) reported that Hg concentrations in
polar bear hair have increased more than 14-fold since preindustrial
times in Greenland, indicating a trend that is likely to involve anthro-
pogenic sources. These increases are in accordance with increases
in other hard tissues from high trophic level Arctic species (AMAP,
2011; Dietz et al., 2009). Polar bear hair represents a non-invasive
substrate that may be collected for risk assessment.

Recent studies on polar bears from the East Greenland coast have
documented Hg-associated reduction of the NMDA receptor levels
and of genomic DNA methylation status in the brain stem (Basu et
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Fig. 10. Mean bloodmercury concentrations in Arctic marine mammals, Arctic Inuit populations and guideline levels for wildlife and humans. For sources and raw data see Table S5.
In cases where minimum and maximum concentrations are available these are indicated by range bars.
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al., 2009; Pilsner et al., 2010). These sub-clinical, biochemical alter-
ations have been reported for populations with hair Hg means of
about 5.4 μg/g dw. These means are comparable to the revised NOEL
(no observed effect level) for Hg in human hair (6.0 μg/g dw) from
the Faroe Islands as suggested by Grandjean and Budtz-Jørgensen
(2007). The revised NOEL from the Faroe Island human population
is half the previous NOEL (12.0 μg/g dw) set for the region (FAO/
WHO, 2003). The U.S. EPA Hg guideline value of 1.0 μg/g dw for
human hair is among the lowest guideline values and is based on a
NOEL of 12.0 μg/g dw with a safety factor of about 10 (U.S. EPA,
cited in FAO/WHO, 2003). As seen from Fig. 11 (and Table 2) some
populations of polar bears like those in Svalbard and western Hudson
Bay have among the lowest hair Hg median concentrations. These
levels are below concentrations in which neurochemical changes
have been observed in East Greenland (Basu et al., 2009) and the
NOEL of 6.0 μg/g dw in humans on the Faroe Islands (Grandjean
and Budtz-Jørgensen, 2007).

None of the bears from western Hudson Bay exceeded the human
Hg threshold level of 12 μg/g dw. Similarly, among the bear fur
samples from 1892 to 1950 sampled by Dietz et al. (2006a), none
exceeded this effect level. The 12 μg/g dw NOEL level was exceeded
in 4.0% to 5.1% of the bears sampled between 1973 and 2000 and be-
tween 2001 and 2008 (Table 2). For Greenland, the percent exceed-
ence was greater for northwestern Greenland (median 2001–2008:
9.4 μg/g dw; see also Table S6) relative to East Greenland (median
2001–2008: 6.1 μg/g dw). The population with the highest Hg con-
centrations, and hence, the population of greatest concern was the
Lancaster Sound bears sampled between 1992 and 1999. Here the
effect levels of 1 and 6 μg/g dw were exceeded by 98.1% to 100% of
the bears respectively, while the 12 μg/g dw effect level was
exceeded by 75.9% of the bears (Table 2). In Lancaster Sound polar
bears a concentration of 30 μg/g dw may have been reached in their
hair by 2001, if the observed Hg increases have continued (Fig. 11).

The median values in northwestern Greenland are already close to
the human guideline value of 12 μg/g dw. If the increases observed in
Greenland continue, then the median concentrations will reach this

level around 2030 in East Greenland and in Northwest Greenland a
concentration of 20 μg/g dw will be reached by 2048, if the observed
Hg increases continue (Fig. 11; Dietz et al., 2011a).

Polar bears sampled in East Greenland in ~2000 exhibiting neuro-
chemical effects in the brain stem had mean hair Hg concentrations of
5.4 μg/g dw (Basu et al., 2009). Among East Greenland bears, in those
sampled between 1973 and 2000 and between 2001 and 2008, 46.3%
and 60.5% of cases, respectively exceeded the brain stem effect limit.
The finding of Hg concentrations continuing to increase in some
regions during the last decades, and the higher Hg levels in the north-
western Greenland and northern Canadian High Arctic populations,
gives rise to concern for these populations (Dietz et al., 2011a; Rigét
et al., 2011). Finally there are parts of the polar bear brain that contain
even higher Hg concentrations (such as the pituitary gland, which has
about 6-fold higher concentrations) than the brain stem, where more
severe effects may be expected (Dietz et al., 2011b).

Future scenarios for hair Hg in hair draw attention to quite high
Hg levels in polar bear fur, which have increased dramatically
compared to the pre-industrial average concentration and which, in
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Table 1
Suggested thresholds for mercury in polar bear hair and effect guidelines in human
hair.

Group Hg μg/g dw Symptoms Source

Polar bear 5.4 Reduction in brain
NMDA receptor level

Basu et al. (2009)

5.4 Reduction in brain
genomic DNA methylation

Pilsner et al. (2010)

Human 12 NOEL and BMDL
for the Faroese
population

FAO/WHO (2003)

6 Revised NOEL and
BMDL for the
Faroese population

Grandjean and
Budtz-Jørgensen (2007)

1 U.S. EPA guideline
values

U.S. EPA cited in
FAO/WHO (2003)
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several regions, continue to increase (Dietz et al., 2006a, 2009, 2011b).
However, high Hg concentration in hair is also an effective way for the
polar bears to excrete Hg from the body. Other species having less fur,
such as seals and walruses, and in toothed whales (beluga, narwhal,
pilot whale), this excretion route is non-existent. Toothed whales are
thus more at risk from Hg, and this is also reflected in their higher con-
centrations in brain, liver and muscle (Olsen et al., 2003; Hoydal and
Dam, 2005, 2009; Sonne et al., 2010; Lemes et al., 2011).

3.5. Comparison of safe guidelines in bird eggs with Arctic seabirds

Dietary MeHg is rapidly transferred to avian eggs on a dose-
dependent basis, making reproduction one of the most sensitive end-
points of Hg toxicity in birds (Wolfe et al., 1998). Nearly all of the Hg
transferred to eggs is in the form of MeHg, with the majority (about
85% to 95%) deposited in the egg white (Wiener et al., 2003). Mercury
concentrations in the egg are a good indicator of Hg risk to avian
reproduction (Wolfe et al., 1998). Some of the documented effects
of Hg on avian reproduction include reduced hatchability due to in-
creases in early mortality of embryos, reduced clutch size, and embry-
onic deformity (Thompson, 1996; Wolfe et al., 1998).

The currently accepted, lowest observed adverse effect level
(LOAEL) for Hg in avian eggs (whole) is 0.5 μg/g ww (range 0.5 to
1.0 μg/g ww) as determined from multi-generational feeding studies
in ring-necked pheasants (Phasianus colchicus) and mallards (Anas
platyrhynchos) (Fimreite, 1971; Heinz, 1976). Based on a review of
the literature, Thompson (1996) concluded that, overall, Hg concen-
trations in excess of 2.0 μg/g ww in eggs have some detrimental ef-
fects. These data point towards Hg concentrations of 0.5 to 2.0 μg/g
ww in eggs as sufficient to induce impaired reproductive success in
a range of bird species.

A survey of recently published concentrations of Hg in eggs (homog-
enates of whole egg contents including yolk and albumen/white) of
Arctic birds (Fig. 12) shows that none of the mean Hg concentrations
reported for eggs of a wide range of aquatic birds exceeded 2.0 μg/g
ww and that only mean values for glaucous gull (Larus hyperboreus)
and ivory gull (Pagophila eburnea) eggs from the Canadian Arctic, and
black guillemot (Cepphus grylle) eggs from the Canadian Arctic and
the Faroe Islands approached or exceeded 0.50 μg/g ww. Braune et al.
(2006) noted that two of the six ivory gull eggs sampled in the Canadian

Arctic exceeded Hg concentrations of 2.0 μg/g ww and five out of six
eggs exceeded 0.50 μg/g ww, compared with themaximum concentra-
tions for ivory gull eggs from the Russian Arctic which ranged from 0.24
to 0.48 μg/g ww (Miljeteig et al., 2009). Although mean Hg concentra-
tions were similar in black guillemot eggs from the Canadian Arctic
and the Faroe Islands, maximum Hg concentrations were higher in
eggs from the Faroe Islands, ranging from 0.898 μg/g ww in 2002 to
1.31 μg/g ww in 2006, compared with maximum values of 0.60 to
0.84 μg/g ww at three colonies in the Canadian Arctic in 2004 (see
Fig. 12, Braune et al., 2006; Hoydal and Dam, 2005, 2009). Knudsen et
al. (2005) reported a maximum Hg concentration of 0.4 μg/g ww in
glaucous gull eggs from northern Norway which is similar to the
mean Hg concentrations found in thick-billed murre (Uria lomvia)
eggs from Prince Leopold Island and northern fulmar (Fulmarus
glacialis) eggs from two locations in the Canadian Arctic (see Fig. 12,
Braune et al., 2006; Braune, 2007). Schmultz et al. (2009) reported a
maximum Hg concentration of 0.60 μg/g ww in eggs of red-throated
loons (Gavia stellata) from Alaska compared with a maximum of
0.50 μg/g ww in eggs of common loons from Alaska (Evers et al.,
2005). Burger et al. (2009) Showed that the Hg concentrations found
in the eggs of glaucous-winged gulls (Larus glaucescens) from the
Aleutian Islands off Alaska were within the range known to affect
avian predators although these latter authors also noted that seabirds
seem to be less vulnerable to Hg than other birds. These data support
the conclusion of Thompson (1996) that pelagic seabirds are not ex-
posed to burdens of Hg that are high enough to induce measurable ef-
fects on reproduction or survival. This could well be due to the ability
of some seabirds to demethylate MeHg in the liver (Kim et al., 1996) al-
though the capacity for demethylation appears to vary among species
(Kim et al., 1996; Eagles-Smith et al., 2009).

3.6. Comparison of fish effect levels with mercury concentrations in Arctic
fish species

Mercury toxicology in fish was not extensively studied before the
late 1990s. Indeed, it was commonly believed that fish were impor-
tant mainly as vectors of MeHg transfer to humans and fish-eating
wildlife. This view was partially supported by the observation that
direct mortality due to MeHg exposure in fish was observed only at
very high tissue Hg concentrations (over 5 μg/g ww in muscle) that

Table 2
Selected polar bear populations and periods showing their percentual exceedence of effect levels given in Table 1.

Population Period

Median Hg, 

N

Percentage exceeding the hair effect levels listed in Table 1.

The effects level below are expresed in µg/g dw.

Data source1 5.4 6 12 

Alaskan Beaufort Sea 2005 6.5 96.2 65.4 59.6 9.6 Cardona–Marek et al., (2009)

4.1 59 100.0 6.8 1.7 0 Dietz et al., (2011b)

Lancaster Sound 16.0 100.0 98.1 98.1 75.9 Dietz et al., (2011b)

North western 3.5

52

54

10 90.0 10.0 10.0 Dietz et al., (2006a, 2011)

Greenland

Western Hudson Bay

7.3 76 100.0 84.2 73.7 6.6 Dietz et al., (2006a, 2011)

9.4 31 100.0 93.5 93.5 25.8 Dietz et al., (2006a, 2011a, 2011b)

East 1.0 9 55.6 Dietz et al., (2006a)

Greenland
5.2 296 100.0 46.3 38.9 5.1 Dietz et al., (2006a)

6.1 124 99.2 60.5 50.8 4.0 Dietz et al., (2006a, 2011b)

Svalbard 1.8

1.8

203

28

93.1 Dietz et al., (2011b)

93.8

0

0 0 0

0 0 0

0 0 0 Dietz et al., (2011b)

1993–2008

1992–1999

1892–1960

1973–2000

2000–2008

1892–1950

1973–2000

2001–2008

1990–2000

2000–2008

µg/g dw
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were characteristic solely of highly contaminated local environments
(Wiener and Spry, 1996). However, more recent studies have reported
a range of toxic effects infish atmuch lowerHg concentrations. It is now
believed that current levels of exposure to environmental MeHg are
sufficiently high to be chronically toxic to a number of predatory fresh-
water fish in many environments (Scheuhammer et al., 2007). For
example, in some independent field studies, body condition in fish of
various species was reported to be inversely correlated with tissue Hg
over a range of about 0.1 to 1.0 μg/g ww in liver or axial muscle (Munn
and Short, 1997; Cizdziel et al., 2003; Drevnick et al., 2008). In a
controlled feeding study, Webber and Haines (2003) reported that
golden shiners (Notemigonuscryso leucas), with whole-body Hg concen-
trations averaging 0.52 μg/g ww, were hyperactive and had altered
shoaling behavior relative to fish with lower Hg concentrations. Other
negative effects of Hg exposure reported in fish include impacts on
reproductive parameters, such as impaired spawning behavior, me-
diated through a disruption of normal neuroendocrine function
(Hammerschmidt et al., 2002; Drevnick and Sandheinrich, 2003;
Klaper et al., 2006; Sandheinrich and Miller, 2006; Crump and Trudeau,
2009). In a critical review of the recent literature, Sandheinrich and

Wiener (2010) concluded that changes in biochemical processes, dam-
age to cells and tissues, and reduced reproduction in fish occur at
MeHg concentrations of about 0.5 to 1.2 μg Hg/g ww in axial muscle.
The lower values of this range are common in some larger freshwater
piscivorous fish throughout eastern North America (Kamman et al.,
2005). The principal effects of these MeHg concentrations in fish tissues
are most likely to be mediated through sublethal damage to tissues and
depressed reproduction (Sandheinrich and Wiener, 2010).

As shown in Fig. 13, the minimum Hg toxicity threshold in fish
muscle of 0.5 μg/g ww, based on the review by Sandheinrich and
Wiener (2010), is seldom exceeded in Arctic marine fish species.
Similarly, a survey of Hg in the muscle of fish species from the Barents
Sea reported that mean Hg concentrations did not exceed 0.25 μg/g
ww in any species (Zauke et al., 1999). Arctic freshwater species tended
to have higher Hg concentrations than marine species (Fig. 13), but
most species from most locations sampled between 1990 and 2008
had mean Hg concentrations in muscle of less than 0.5 μg/g ww.
However, the putative toxicity threshold was approached or exceeded
for some freshwater predatory species such as lake trout (Salvelinus
namaycush), northern pike (Esox lucius), and landlocked Arctic char

0.01 0.1 1 10 100 1000 10000

 ww

LOAEL low

LOAEL high

St. George I., Alaska, 2000
Bogoslof I., Alaska, 2000

St. Lazaria I., Alaska, 2001
Prince Leopold I., Canada, 2003

Coats I., Canada, 2003

Little Diomede I., Alaska, 1999
St. George I., Alaska, 1999

East Amatuli I., Alaska, 1999
Bogoslof I., Alaska, 2000

St. Lazaria I., Alaska, 2001
St. Lazaria I., Alaska, 1999

Prince Leopold I., Canada, 2004
Devon I., Canada, 2004

Southampton I., Canada, 2004
Faroe Islands, 2002
Faroe Islands, 2004
Faroe Islands, 2006

Aleutians - Adak, Alaska, 2004
Aleutians - Amchitka, Alaska, 2004

Aleutians - Kiska, Alaska, 2004
Prince Leopold I., Canada, 2003

Bjørnøya, Norway, 2002

Seymour I., Canada, 2004
Svenskøya, Norway, 2007
Nagurskoe, Russia, 2006
Cape Klyuv, Russia, 2006
Domashny, Russia, 2006

Hornøya, Norway, 2003

Prince Leopold I., Canada, 2003
Devon I., Canada, 2003

Prince Leopold I., Canada, 2003
Hornøya, Norway, 2003

Arctic Coastal Plain, Alaska, 1999-2002
Cape Espenberg, Alaska, 1999-2002

Yukon-Kushokwim Delta, Alaska, 1999-2002
Copper River Delta, Alaska, 1999-2002

Alaska, 1992-1998

Yukon-Kushokwim Delta, Alaska, 2002-03

Hornøya, Norway, 2003
Hjelmsøy, Norway, 2003

Thick-billed murre

Common murre

Black guillemot

Glaucous and Glaucous-
winged gulls

Ivory gull

Herring gull

Northern fulmar

Black-legged kittiwake

Red-throated loon

Common loon

Greater scaup

Fig. 12. Mean total mercury concentrations in eggs from a range of Arctic bird species as summarized from the literature, in comparison with effect levels for potential reproductive
impairment from Thompson (1996). The bars indicate maximum range values, where available. For sources and raw data see Table S7. In cases where minimum and maximum
concentrations are available these are indicated by range bars.
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(Salvelinus alpinus) from some sampling sites (Fig. 13; Evans et al.,
2005; Lockhart et al., 2005). The highest mean Hg value (1.78 μg/g
ww; Fig. 13) was for landlocked Arctic char sampled from Amituk
Lake, Cornwallis Island, Canada; however, as discussed by Lockhart et
al. (2005), this value is an adjusted (not a measured) value based on a
length regression, and may be erroneously high. Nevertheless, land-
locked char in general have higher Hg concentrations than sea run
char (Rigét et al., 2004; Lockhart et al., 2005).

The range of fish Hg toxicity thresholds (0.5 to 1.2 μg/g ww in
muscle) suggested by Sandheinrich and Wiener (2010) was based
on a review of the fish toxicology literature which deals almost

exclusively with freshwater species. Although Arctic marine fish spe-
cies tended to have relatively low muscle Hg concentrations, it is un-
certain how well toxicity thresholds based on freshwater fish may be
applied to marine species. There is far less information on the effects
of MeHg on saltwater fish, and the issue of the interaction between Se
and Hg in marine species adds potential complexity to the issue. As in
other animal species, Se canmodulate Hg toxicity in fish (Sørmo et al.,
2011). In addition, there do not appear to be any Hg data for large
predatory marine fish such as sharks in Arctic waters, for which Hg
levels would be expected to be considerably higher than for the spe-
cies shown in Fig. 13. Nonetheless, currently available data on Hg in

Freshwater

Marine

0.01 0.1 1 10 100 1000 10000

 ww

Fish toxicity threshold (freshwater)

Mackenzie R. Basin, Canada, 1999-2001
Great Slave Lake, Canada, 1999-2002

Lake Kusawa (Yukon), Canada, 1993-2002
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Cambridge Bay, Canada, 1991-93
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Ellice R., Canada, 1990-93
Surrey R., Canada, 1990-93

Netling, Canada, 1990
Silvia Grin R., Canada, 1991
Ferguson R., Canada, 1992

Wilson R., Canada, 1993
Rankin Inlet, Canada, 1991-93

Gore Bay, Canada, 1992
Hall Beach, Canada, 1992

Richmond Gulf, Canada, 1994
Pangnirtung Giord, Canada, 1992
Northern Quebec, Canada, 1990s

Labrador, Canada, 1990s
Sandy Point, Canada, 1992-93

Labrador/Newfoundland, Canada, 1990
Iceland, 1990-92

NW Iceland, 2000-07
SW Iceland, 2001

NE Iceland, 2000-07
SE Iceland, 2001-03

Faroe Island, 2000-07
Faroe Islands, 1994

Haltenbanken, Norway, 1994
Stokken, Norway, 2005

 Froan/Stokken, Norway, 1993-94
Lille Molla, Norway, 2002-06
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Kvunangen, Norway, 2006-07

Finnsnes, Norway, 1994
Hammerfest, Norway, 1994

Svalbard, Norway, 1993
Barents Sea, Norway, 1993

Lille Moalla, Norway, 2000-06
Skogeray, Norway, 2000-07

Cape Farvel, Greenland, 1994
Denmark Strait, Greenland, 1994

Iceland, 1994
Faroe Islands, 1994

Haltenbanken, Norway, 1994

Svalbard, 1993
Barents Sea (Norway), 1992-93

Iceland, 1990-91

Burbot

 Lake trout

Pike

Char
(landlocked)

Char
(sea run)

Atlantic cod

Plaice

Long rough dab

Common dab

Fig. 13. Mean total mercury concentrations in muscle summarized from data for selected Arctic fish species sampled from locations in Arctic Canada, Norway, Iceland, Greenland,
the Faroe Islands and Sweden. Plotted values are means for five or more individuals per location sampled between 1990 and 2009. The solid red line indicates the lowest suggested
threshold in dorsal muscle for mercury toxicity in fish (0.5 μg/g; Sandheinrich and Wiener, 2010). The fish mercury data are from a range of sources (Dietz et al., 2011b). See Table
S8 for further details.
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Arctic fish does not indicate a significant risk of toxicity for most
species analyzed to date, with the possible exception of some larger
freshwater predatory species. As the vast majority of fish Hg data
concern muscle concentrations, the above assessment was based on
muscle levels alone. To what extent additional information could be
obtained by analyzing Hg in other fish tissues such as the liver, kidney
and brain remains unanswered in the present assessment.

4. Conclusions

Overall, among wildlife and fish species, the highest Hg concentra-
tions in brain tissue are found in Arctic toothed whales, and values are
in the range of demonstrated Hg-associated neurochemical effects.
Despite relatively high concentrations of Hg in the liver and kidney
of polar bears, brain stem values were low. However, significant
correlations have been reported between brain stem Hg levels and
changes in Hg-neurochemical biomarkers observed for fish-eating
wildlife. Mean liver Hg concentrations and probably also kidney con-
centrations in polar bears from southwestern Melville Island and the
eastern Beaufort Sea exceeded the general toxic threshold Hg values
for terrestrial and marine mammals. Hg concentrations in the non-
invasive polar bear hair are indicative of those measured in other tis-
sues such as the brain and liver and raise concern about Hg exposure
and possible health effects in some regions of the Arctic (northern
Canada and Greenland) especially taking the observed temporal
increases into account.

Pilot whales from the Faroe Island and in some cases beluga
populations fromSt. Lawrence and Point Lay hadmeanHg liver concen-
trations exceeding the threshold values for liver damage. Most bird
species (with the exception of scaup,murre and puffin) have Hg concen-
trations in eggs sufficiently high to raise concern about negative effects
on reproductive success. Arctic marine fish species had Hg concentra-
tions below suggested toxicity thresholds, but freshwater species had
higher concentrations. For landlocked Arctic char the guideline limits
were exceeded.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.scitotenv.2012.11.046.
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